Conditional, Partial and Rank Correlation for the Elliptical Copula; Dependence Modelling in Uncertainty Analysis

نویسنده

  • D. Kurowicka
چکیده

The copula-vine method of specifying dependence in high dimensional distributions has been developed in Cooke [1], Bedford and Cooke [6], Kurowicka and Cooke ([2], [4]), and Kurowicka et all [3]. According to this method, a high dimensional distribution is constructed from two dimensional and conditional two dimensional distributions of uniform variaties. When the (conditional) two dimensional distributions are specified via (conditional) rank correlations, the distribution can be sampled on the fly. When instead we use partial correlations, the specifications are algebraically independent and uniquely determine the (rank) correlation matrix. We prove that for the elliptical copulae ([3]), the conditional and partial correlations are equal. This enables on-the-fly simulation of a full correlation structure; something which here to fore was not possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental results about the assessments of conditional rank correlations by experts: Example with air pollution estimates

Science-based models often involve substantial uncertainty that must be quantified in a defendable way. Shortage of empirical data inevitably requires input from expert judgment. How this uncertainty is best elicited can be critical to a decision process, as differences in efficacy and robustness of the elicitation methods can be substantial. When performed rigorously, expert elicitation and po...

متن کامل

Sampling algorithms for generating joint uniform distributions using the vine-copula method

7 An n-dimensional joint uniform distribution is defined as a distribution whose one-dimensional marginals are uniform on some interval I. This interval is taken to be [0,1] or, when more convenient [− 1 2 , 1 2 ]. The specification of joint uniform distributions 9 in a way which captures intuitive dependence structures and also enables sampling routines is considered. The question whether ever...

متن کامل

Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models

H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...

متن کامل

GJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets

Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dep...

متن کامل

Credit Risk Modelling and Estimation via Elliptical Copulae

Dependence modelling plays a crucial role within internal credit risk models. The theory of copulae, which describes the dependence structure between a multi-dimensional distribution function and the corresponding marginal distributions, provides useful tools for dependence modelling. The difficulty in employing copulae for internal credit risk models arises from the appropriate choice of a cop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001